Fiber Alignment in Confined Shearing Flows

Simulation and Validation of Slurry Dynamics and Rheology

Scott Strednak and Jason E. Butler
Department of Chemical Engineering
University of Florida
Gainesville, FL

Center for Particulate and Surfactant Systems (CPaSS)
Spring 2019 IAB Meeting
Columbia University, NY
August 6-7, 2019
Motivation

GOAL: An inexpensive and rapid simulation method validated by experiments for predicting the rheology and microstructural dynamics of concentrated suspensions.

- Microstructure at high concentrations?
 - significantly different from spheres – orientation dependence!
- Irreversible dynamics and microstructure in general flows.
 - shear-induced migration in oscillatory flows!
- Effect of microstructure on rheological measurements?
 - benefit from accurate models and simulations!

Rod Rheology (Tapia et al., 2017)

Andreas Acrivos (spheres) Journal of Rheology 1995 39:5, 813-826

Increasing power requirement

Region of interest

Increasing water content

Intrinsic Viscosity

Particle Volume Fraction

Shear viscosity (η_s, Pa·s)

$A=L/d$

ϕ_m
Examine the irreversible dynamics in slurries and apply findings to generate accurate predictive capabilities for real suspensions.

* Previous work: including contact forces and lubrication can accurately predict the microstructure in sheared suspensions of spheres and rigid fibers.

* Using suspensions of particles that are
 - non-colloidal
 - neutrally buoyant
 - in Newtonian fluids

* Challenges:
 - understanding how shape, concentration, orientation, etc. affects rheology and flow
 - can apply to fundamentals of coating and pumping
* Expanding studies beyond mono-modal spheres to poly-disperse and rod systems.
Pipe Flow Experiments (Previous IAB Meeting)

Objective:
Measure the spatial and orientation distribution in pipe flow using refractive indexed matched particles, fluorescence and direct imaging.

Particles: PMMA, \((\rho \sim 1.19 \text{ g/cm}^3) \), \(\text{A=L/d=11.3 \& 22.6} \)
Fibers are rigid, non-colloidal, non-inertial, and neutrally buoyant.

Fluid: Newtonian mixture of Triton X-100, ZnCl\(_2\), and water, adjusted to make the particles neutrally buoyant.

- Oscillatory displacement of the suspension in tube flow
- Experiments performed under various number densities \((n_0L^2d = 0.42 \text{ to } 3) \)

\(n \): number of fibers per unit volume
\(L \): fiber length
\(d \): fiber diameter
\(n_0L^2d > 1 \) in concentrated regime
We observe nematic structures in some of our experiments.
Previous Findings:
• Experimental evidence of shear-induced migration of concentrated fiber suspensions.
• Migration of fibers scales with $\varphi A (\propto nL^2d)$, instead of φ.
• Fibers tend to align in the flow direction, while fibers near the wall show vorticity alignment.

Simulations:
• Altered boundaries from parallel plates to circular tube.
• Updated the short-range repulsive interaction to a Hertzian contact force.
• Added oscillating flow to match experiments.
• Update the flow field as fibers migrate toward center of channel/tube.
Oscillatory displacement of the suspension in simple shear flow.

Experiments performed under various gap sizes, volume fractions, and strain amplitudes.

Shear Cell Experiments - Setup

Objective:
Measure the orientation distribution in shear flow using *refractive indexed matched* particles, fluorescence and direct imaging.

Particles: PMMA, \(\rho \sim 1.19 \text{ g/cm}^3 \), \(A=L/d=11.3 \ & 22.6, \ d=0.23 \ & 0.46 \text{ mm} \)
Fibers are rigid, non-colloidal, non-inertial, and neutrally buoyant.

Fluid: *Newtonian* mixture of Triton X-100, ZnCl\(_2\), and water, adjusted to make the particles neutrally buoyant.

- Oscillatory displacement of the suspension in simple shear flow.
- Experiments performed under various gap sizes, volume fractions, and strain amplitudes.
Shear Cell Experiments - Videos

H=1.5L, A=11, d=0.46mm, gamma=2.5

H=1.5L, A=11, d=0.23mm, gamma=2.5

Or maybe I'll just show one video. I have not decided.
• Free surface diffracts laser, making image quality difficult to process systematically.
• Exclude particles in analysis that are within one particle length of the boundaries.
Order parameter: $S_\alpha = 1 - 2\langle \cos^2 \alpha \rangle$

- α is the angle between the fiber’s projection in the flow-vorticity plane and the flow direction
- $S_\alpha = 1$: alignment in the vorticity direction
- $S_\alpha = -1$: alignment in the flow direction
Shear Flow Simulations

Simulate concentrated suspensions of rods in a parabolic flow between two plates:

\[u(x) = \dot{\gamma}(t) y e_x \]

- Periodic in the flow and vorticity directions. Bounded by walls in gradient direction.

- Flow impacts movement and rotation of particles.

- Short range repulsive force between rods (collision).

\[\dot{x}_\alpha = u(x_\alpha) + \xi^{-1} (I + p_\alpha p_\alpha) \cdot F_\alpha \]

\[\dot{p}_\alpha = \Omega \cdot p_\alpha + B (I - p_\alpha p_\alpha) \cdot E \cdot p_\alpha + \frac{12 \xi^{-1}}{L^3} (I - p_\alpha p_\alpha) \cdot \tilde{F}_\alpha \]

\[B = \frac{A_e^2 - 1}{A_e^2 + 1} \quad \xi^{-1} = \ln(2A) / 4\pi \mu L \]
Simulation - Results/Comparisons

• Volume fraction of 20%
• Vorticity alignment in simulations at strain amplitude of 3

• Steady state orientation distribution
• Vorticity alignment observed for system in confinement (bounded)
Objective:
Measure resuspension of settled fibers in suspension.
Using refractive index matched particles, fluorescence and direct imaging.

- Resuspension has been evaluated theoretically and experimentally for spheres.
- Preview of settled fibers being resuspended.
- Industrial Relevance: Mixing applications and relating heavy particles with rheological properties!
Project Summary

Experiments

<table>
<thead>
<tr>
<th>Spheres</th>
<th>Rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear-induced migration of spheres</td>
<td>Rheology of concentrated suspensions of rigid fibers</td>
</tr>
<tr>
<td>Particle dispersion: role of contacts</td>
<td>Shear-induced migration of rods</td>
</tr>
<tr>
<td>Rheology of concentrated suspensions of spheres</td>
<td></td>
</tr>
</tbody>
</table>

Simulations

<table>
<thead>
<tr>
<th>Spheres</th>
<th>Rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irreversibility and chaos in suspensions</td>
<td>Vorticity alignment of fibers</td>
</tr>
<tr>
<td>Normal stress differences</td>
<td>Normal stress differences</td>
</tr>
</tbody>
</table>

- Have demonstrated the ability to predict microstructure in uniform shearing flows.
- Data for validating the prediction of microstructure in non-uniform shearing flows has been generated for both spherical and non-spherical particle suspensions.

CONTINUING WORK: Improve simulations predicting the microstructure in non-uniform flows.
<table>
<thead>
<tr>
<th>TASK</th>
<th>Summer 2018</th>
<th>Fall 2018</th>
<th>Spring 2019</th>
<th>Summer 2019</th>
<th>Fall 2019</th>
<th>Spring 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube flow migration – Data analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of migration on microstructure – Simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear cell microstructure – Experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear cell resuspension – Experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear cell microstructure – Data analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of confinement (shear cell) – Simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamming in non-uniform flows – Experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deliverables:
- Paper published on quantitative measurements of shear-induced migration of concentrated fiber suspensions in tube flow.
- Simulations validated by experimental data for the prediction of the spatial and orientation distribution using a contact-force model.
- Measurements of fiber alignment in confined shear flow system.
Accomplishments and Acknowledgment

Accomplishments *since last CPaSS Meeting*:

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No. 1362060 and by CPaSS industry members.

Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation/Sponsors.