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Rheology of Non-Newtonian Mixtures 

Industrial Relevance: Industrial Relevance: Personal Care, 
nanotechnology, paints and pigments, food industry, oil industry  

Research Team: Sean Parlia, Dr. Andrei Dukhin, Dr. Ponisseril 
Somasundaran 
Overview: We employ two methods for studying the rheology of 
mixtures of nonpolar media mixed with surfactant:  Shear 
Viscosity and Longitudinal Viscosity measurements.  

Technical Information: Effect of chain length on rheology of 
nonpolar mixtures; Energy of molecular interactions for short-
chain surfactants, volume-based mixing rule for long-chain 
surfactants, Expanding-collapsing of flexible long-chain surfactant 
molecules 
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Stress 



Classical Mixing Rules 
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2211 lnlnln  xxm 

• Arrhenius Mixing Rule (1887): 

 

 

 

 

• Grunberg-Nissan Mixing Rule (1949): 

 

 

 

 

• Katti-Ghaudhri Mixing Rule (1964): 

dxxxxm 212211 loglnln  

222111 lnlnln VxVxVmm  

Symbols 

η – viscosity 

x – mole fraction 

V – molar volume 

Molecular energy 

relating to structure 



Classical Mixing Rules, Continued 
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• Excess Activation Energy of the Viscous Flow: 

 

 

 

 

• Eyring’s Representation of Liquid Viscosity: 

 

 

 

 

• Combining above equations for 2-component mixture: 
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Symbols 
R– gas constant 

T – absolute temp. 

E – intermolecular energy    

between components 
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Materials and Measurements 
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Materials -   
 

 

• Long Chain Surfactants: 

• Xiameter OFX-5098 

• Molecular Weight: 3,255.9 g/mol 

• Xiameter OFX-0400- 

• Molecular Weight: 3,101.1 g/mol 

 

• Short Chain Surfactants: 

• Sorbitan Monolaurate (SPAN 20) –  

• Molecular Weight: 346.5 g/mol 

• Sorbitan Monooleate (SPAN 80)- 

• Molecular Weight: 428.6 g/mol 

 

Newtonian Liquid: 
• Toluene 

• Molecular Weight: 92.14 g/mol 

Non- Newtonian Liquids: 

Measurements 

• Shear Viscosity – Translational & Oscillational* Motion 

• Longitudinal Viscosity – Oscillational Motion 



Shear Rheology – Short Chain Surfactant 
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• Simple Mixing Rules Fail 

• Excess Activation Energy Mixing 

Rule fits data  

• Indicates strong 

intermolecular interactions 

E12 Values: 
 

• SPAN 20: 16,131 J 

• SPAN 80: 21,293 J 
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Intermolecular Forces E12 Consistent with HLB 
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HLB Numbers: 

• SPAN 20 – 8.6 

• SPAN 80 – 4.3 

 
• SPAN 80 is more hydrophobic than SPAN 20, so it has higher affinity for 

nonpolar Toluene.   

• E12 is higher for SPAN 80 than SPAN 20, confirming higher affinity for 

toluene. 

ΔG Values (at 50% Surfactant concentration): 

 SPAN 20 : 4040 J   SPAN 80: 5040 J  

These values are ~2x higher than values reported by Monsalvo[1] for mixtures of 

1,1,1,2-tetrafluoroeethane (HFC-134a) with tetraethylene glycol dimethylether  

[1] - Monsalvo M.A., Baylaucq A., Reghem P., Quinones-Cisneros S.E., Boned C. “Viscosity measurements and 

correlations of binary mixtures: 1,1,1,2-tetrafluoroeethane (HFC-134a) + tetraethylene glycol dimethylether 

(TEGDME), J. Fluid Phase Equilibria, 233, 1-8 (2005) 

 



Classic Mixing Rules Fail for Long Chains 
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• Standard mixing 

rules, based on 

mole fractions, 

fail in all cases 

• Even  when 

considering excess 

activation energy, 

theories still fail. 



Vol. Fraction Based Rule Works for Long Chains 
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21 lnln)1(ln  m

Volume fraction-based 

mixing rule: 

Why does this theory 

work, but not the others? 



Hypothesis for Long Chain Surfactants 
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• Surfactant is initially bound in place 

to nonpolar media (toluene) 

• Under stress the molecule stretches 

• When molecule is sufficiently 

stretched, it can release from initial 

molecule, and return to original shape 

in new position, moving 

translationally. 

• Longitudinal rheology data used for 

exploring this hypothesis 

Distance 

Initial State 

Expansion under longitudinal stress 

Return to initial state, moved 
translationally 

Stress 

P 

x 

Pressure Gradient 



Hypothesis for Long Chain Surfactants 
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• Think:  Slinky 

 

 
• Molecule experiences consecutive cycles of  

    expansion and collapsing. In addition, it progresses 

    forward driven by the stress.  

 

• Such motion can be presented as superposition of oscillation and 

translation.  

 

• Consequently, the two degrees of freedom that are involved 

translational and oscillational.  

 

• According to this model, viscosity of the mixture depends solely on the 

amount of the non-Newtonian surfactant, hence: 

21 lnln)1(ln  m



Longitudinal Rheology: Role of Oscillation 
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Longitudinal ultrasound-based rheometer: 
 

• Measures attenuation at multiple frequencies from 1 – 100 MHz: 

 

• Molecules undergo mostly oscillational motion when such device is employed. 

 

• This would allow us to characterize this degree of freedom individually, 

separately from the translational degree of freedom.  

 

• Also can use to characterize mixtures as Newtonian or Non-Newtonian: 

• Newtonian liquid viscosity is independent of frequency. 

 



Short-Chain Surfactants always Non-Newtonian 
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SPAN 20 

SPAN 80 

• Short-chained surfactants (SPAN) form 

non-Newtonian liquid mixtures even at 

very low concentrations 

• Only at VERY low concentrations do 

the mixtures transition to Newtonian 

(below 1%) 

Longitudinal Viscosity vs. 

Frequency Plots 



Long-Chain Surfactants: Unique Behavior 
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OFX-5098 

OFX-0400 

Long-chain surfactant 

mixtures become Newtonian at 

MUCH higher concentrations: 

• OFX-5098 – Below 12.5 % 

• OFX-0400 – Above 25 % 

 

Oscillation of long-chained molecules in an 

ultrasound wave does not contribute to the 

longitudinal viscosity 

•  indicates that the long chained 

molecules that we study here are 

practically purely elastic.  

 

Their oscillation is thermodynamically 

reversible and does not lead to energy 

dissipation.  

 



Conclusions 
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• Classic Mixing rules successfully model viscosity for mixtures with 

short-chain surfactants 

• Allows for calculation of excess activation energy between 

surfactant and toluene 

 

• Volume-fraction based mixing rule succeeds in predicting viscosity 

data 

 

• Hypothesized that energy dissipation for long-chained surfactants 

caused by expanding-collapsing of flexible long-chain surfactant 

molecules (slinky) 

 

• Longitudinal rheology data implies that oscillational motion does 

not result in energy dissipation for long-chain surfactants 

• Molecules are effectively elastic 

• All energy dissipation comes from translational motion 
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